જો $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ અને $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ મા અનુક્રમે સાત અને ત્રણ ભિન્ન સભ્યો હોય તો વિધેય $f:A \to B$ ની કુલ સંખ્યા ..... મળે કે જેથી વિધેયો વ્યાપત થાય જ્યા ત્રન સભ્યો $x$ ન એ ગણ $A$ મા એવા છે કે જેથી $f(x) = {y_2}$ થાય
$14{(^7}{C_2})$
$16{(^7}{C_3})$
$12{(^7}{C_2})$
$14{(^7}{C_3})$
અહી $f(x)=x^6-2 x^3+x^3+x^2-x-1$ અને $g(x)=x^4-x^3-x^2-1$ બે બહુપદી છે. અહી $a, b, c$ અને $d$ એ $g(x)=0$ ના બીજ હોય તો $f(a)+f(b)+f(c)+f(d)$ ની કિમંત મેળવો.
ધારો કે $f= R \rightarrow(0, \infty)$ વિકલનીય વિધેય છે,જ્યાં $5 f(x+y)=f(x) . f(y), \forall x, y \in R$. જો $f(3)=320$ હોય,તો $\sum \limits_{ n =0}^5 f( n )=.......$
વિધેય $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ નુ આવર્તમાન મેળવો, ( જ્યા $[.]$ એ મહત્તમ પુર્ણાક વિધેય છે.)
વિધેય $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ નો પ્રદેશ મેળવો.
$x = - 3$ માટે સમીકરણ $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ ની કિમત મેળવો.